This article is cited in	 
                         1 paper
                         	
			
				On a sufficient statistics for families of distributions with variable support of density. I
		
			M. S. Ermakov		
			Abstract:
			Let 
$X_i$, 
$i=\overline{1,n}$ be independent random vectors with density 
$f(x,\Theta)$, (
$\Theta\in R^d$). Support 
$f(x,\Theta)$ depend on 
$\Theta$. Let 
$R_n\{\Theta|\prod_{i=1}^nf(x_i,\Theta)\ne0\}$. Then 
$(T,R_n)$ is sufficient statistics, if $\prod_{i=1}^nf(x_i,\Theta)=g_\Theta(T)h(x_1,\dots,x_n)\cdot\chi_{R_n}(\Theta)$,  for some measurable functions 
$g_\Theta(T)$ and 
$h$. Instead of 
$(T,R_n)$ we take sufficient statistics 
$x_{j_1},\dots,x_{j_{\alpha_n}},T$ if $R_n\{\Theta|\prod_{i=1}^{\alpha_n}f(x_{ji},\Theta)\ne0\}$. Denote 
$x_{j_1},\dots,x_{j_{\alpha_n}}$ suffiсient statistics of described type with minimum 
$\alpha_n$. Under wide assumptions it is shown, that 
$\alpha_n$ is bounded on probability when 
$n\to\infty$ (Th. 4.1). The limit distribution of 
$\alpha_n$ and 
$x_{j_1},\dots,x_{j_{\alpha_n}}$ is investigated (Th. 4.4, 4.5). Some weak analogous of Dynkin's theorems is proved for statistics 
$T$.	
			
UDC:
			519.2