RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1980 Volume 97, Pages 88–101 (Mi znsl3267)

This article is cited in 2 papers

Asymptotic bounds on the quality of the nonparametric regression estimation in $\mathscr L_p$

I. A. Ibragimov, R. Z. Khas'minskii


Abstract: We consider the asymptotic set-up of the following nonparametric problem. Choose the points of measurement $X_1,\dots,X_N$ and estimate the unknown function $f$ on the base of observations
$$ Y_i=f(X_i)+G_i(X_i,\omega),\quad i=1,\dots,N, $$
where noise variables $G_1,\dots,G_N$ are independent when $X_1,\dots,X_N$ are fixed. We suppose that the deviation of estimator from regression function $f$ is measured in $\mathscr L_p$ metrix, $1\le p<\infty$. The case $p=\infty$ we consider in [1].

UDC: 519.2


 English version:
Journal of Soviet Mathematics, 1984, 24:5, 540–550

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024