RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 107, Pages 71–88 (Mi znsl3416)

This article is cited in 1 paper

Once more about free interpolation by functions analytic outside of a preseribed set

S. V. Kislyakov


Abstract: Let $\mathbb T=\{z\in\mathbb C:|z|=1\}$, $E=\operatorname{clos}E\subset\mathbb T$, $mE>0$. It is shown that (even if $E$ is nowhere dense in $\mathbb T$) there exist functions $f$ analytic in $\widehat{\mathbb C}\setminus E$ and satisfying some strong supplementary conditions (e.g. the uniform convergence of Maclaourin series in $\overline{\mathbb D}$, $\overline{\mathbb D}=\{z:|z|\le1\}$ and with boundary values of $f|(\widehat{\mathbb C}\setminus\mathbb D)$ of the form $\mathbb P_g$ with $g\in\mathbb C(\mathbb T)$, where $\mathbb P_-$ is the orthogonal projection from $L^2$ onto $H_-^2$). Moreover, some theorems about free interpolation by such functions are established.

UDC: 517.547


 English version:
Journal of Soviet Mathematics, 1987, 36:3, 342–352

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024