RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 107, Pages 178–188 (Mi znsl3423)

This article is cited in 1 paper

Zero sets for functions from $\Lambda_\omega$

N. A. Shirokov


Abstract: The following result is proved:
THEOREM: {\it Let $S$ be an inner function, $\operatorname{spec}S\subset E$, $E\subset\operatorname{clos}\mathbb D$. Suppose $E$ satisfies
$$ \sum_{\alpha\in\mathbb D\cap E}(1-|\alpha|)<\infty,\quad\int_{\partial\mathbb D}\log\omega(\operatorname{dist}(z,E))|dz|>-\infty, $$
$\omega$ being a continuity modulus. Then there exists a function $\Lambda_\omega$ such that $f^{-1}(0)\in E$ è $f|_S\in\Lambda_\omega$}.

UDC: 517.9


 English version:
Journal of Soviet Mathematics, 1987, 36:3, 408–414

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025