RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 107, Pages 204–208 (Mi znsl3427)

Short communications

Existence of invariant subspaces for operators with non-symmetrical growth of resolvent

B. M. Solomyak


Abstract: Existence of invariant and hyperinvariant subspaces is obtained for some new classes of bounded operators in a Banach space. The operators under consideration have “thin” spectrum (in the most interesting cases the spectrum is a single point) and a certain nonsymmetry in the growth of resolvent. For example, one can take $T$ such that $\sigma(T)=\{0\}$ and for some $\beta\in(0,\pi]$,
\begin{gather} \|(\lambda J-T)^{-1}\|\le c|\lambda|^{-n},\quad|\arg\lambda|>\beta;\\ \quad\|(\lambda J-T)^{-1}\|\le c\exp|\lambda|^{-\pi/2\beta}, \quad|\arg\lambda|\le\beta. \end{gather}
Hyperinvariant subspaces have the form $\operatorname{Ker}f(T)$, where $f(T)$ is defined in a special functional calculus.


 English version:
Journal of Soviet Mathematics, 1987, 36:3, 423–426

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025