RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 365, Pages 196–207 (Mi znsl3473)

This article is cited in 1 paper

On another proof for B. Sury's theorem

A. V. Prokopchuk, V. I. Yanchevskii

Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract: For a central simple algebra $A$ over a global field with an involution of second kind $\tau$ we give an explicit description of the group $\mathrm{SU}(A,\tau)/[U(A,\tau),U(A,\tau)]$. It is another proof for B. Sury's theorem. Bibl. – 11 titles.

UDC: 512.7

Received: 12.01.2009


 English version:
Journal of Mathematical Sciences (New York), 2009, 161:4, 565–571

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025