RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 366, Pages 53–66 (Mi znsl3481)

Tests for exponential decay of eigenfunctions for some classes of integral operators

V. M. Kaplitskyab

a Institute of Applied Mathematics and Informatics, Vladikavkaz Scientific Centre, RAS, Vladikavkaz, Russia
b Southern Federal University, Faculty of Mathematics, Mechanics and Computer Sciences, Rostov-na-Donu, Russia

Abstract: We investigate conditions sufficient for an exponential decay of eigenfunctions in the case of a certain class of integral equations in unbounded domains in $\mathbb R^n$. The integral operators $K$ in question have kernels of the form
$$ k(x,y)=\frac{c(x,y)}{|x-y|^\beta}\,e^{-\alpha|x-y|},\qquad x,y\in\Omega\subset\mathbb R^n, $$
where $\alpha>0$, $0\leq\beta<n$, $c(x,y)\in L_\infty(\Omega\times\Omega)$. It is shown that, if the operator $T=I-K$ is Fredholm, then all solutions of the equation $\varphi=K\varphi$ have exponential decay at infinity. Applications to Wiener–Hopf operators with oscillating coefficient and some classes of convolution operators with variable coefficients are considered. Bibl. – 14 titles.

UDC: 517.5

Received: 05.02.2009


 English version:
Journal of Mathematical Sciences (New York), 2010, 165:4, 455–462

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024