RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 367, Pages 27–32 (Mi znsl3488)

This article is cited in 2 papers

Verifying unitary congruence of coninvolutions, skew-coninvolutions, and connilpotent matrices of index two

Kh. D. Ikramov

Moscow State University, Moscow, Russia

Abstract: It is shown that $n\times n$ solutions $A$ and $B$ of the matrix equation
$$ X\overline X=\delta I, $$
where $\delta$ is one and the same scalar for both matrices, are unitarily congruent if and only if
$$ \operatorname{tr}(A^*A)^k=\operatorname{tr}(B^*B)^k,\qquad k=1,2,\dots,n. $$
Bibl. – 8 titles.

UDC: 512

Received: 03.02.2009


 English version:
Journal of Mathematical Sciences (New York), 2010, 165:5, 511–514

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024