RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 367, Pages 45–66 (Mi znsl3490)

This article is cited in 4 papers

Quadratically normal and congruence-normal matrices

Kh. D. Ikramova, H. Fassbenderb

a Moscow State University, Moscow, Russia
b Institute of Computational Mathematics, TU Braunschweig, Braunschweig, Germany

Abstract: A matrix $A\in\mathbf C^{n\times n}$ is unitarily quasi-diagonalizable if $A$ can be brought by a unitary similarity transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. In particular, the square roots of normal matrices, the so-called quadratically normal matrices, are unitarily quasi-diagonalizable.
A matrix $A\in\mathbf C^{n\times n}$ is congruence-normal if $B=A\overline A$ is a conventional normal matrix. We show that every congruence-normal matrix $A$ can be brought by a unitary congruence transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. Our proof emphasizes and exploits the likeliness between the equations $X^2=B$ and $X\overline X=B$ for a normal matrix $B$. Bibl. – 13 titles.

Key words and phrases: quadratically normal matrices, conjugate-normal matrices, congruence-normal matrices, unitary similarity transformations, unitary congruence transformations, singular values.

UDC: 512

Received: 06.10.2008


 English version:
Journal of Mathematical Sciences (New York), 2010, 165:5, 521–532

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024