RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 325, Pages 61–82 (Mi znsl350)

This article is cited in 6 papers

On the Fourier transform on the infinite symmetric group

A. M. Vershik, N. V. Tsilevich

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We present a sketch of the Fourier theory on the infinite symmetric group ${\mathfrak S}_\infty$. As a dual space to ${\mathfrak S}_\infty$, we suggest the space (groupoid) of Young bitableaux $\mathcal B$. The Fourier transform of a function on the infinite symmetric group is a martingale with respect to the so-called full Plancherel measure on the groupoid of bitableaux. The Plancherel formula determines an isometry of the space $l^2({\mathfrak S}_\infty,m)$ of square integrable functions on the infinite symmetric group with the counting measure and the space $L^2({\mathcal B},\tilde\mu)$ of square integrable functions on the groupoid of bitableaux with the full Plancherel measure.

UDC: 517.986

Received: 25.05.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 138:3, 5663–5673

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024