RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 369, Pages 16–47 (Mi znsl3519)

This article is cited in 2 papers

Forward dynamical problem for Timoshenko beam

M. I. Belishev, A. L. Pestov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We deal with an initial boundary value problem of the form
\begin{align*} &\rho u_{tt}-(\Gamma u_x) _x+Au_x+Bu=0,\qquad x>0,\quad 0<t<T,\\ &u|_{t=0}=u_t|_{t=0}=0,\qquad x\geq0,\\ &u|_{x=0}=f,\qquad0\leq t\leq T, \end{align*}
where $\rho=\mathrm{diag}\{\rho_1,\rho_2\}$, $\Gamma=\mathrm{diag}\{\gamma_1,\gamma _2\}$, $A$, and $B$ are smooth $2\times2$-matrix functions of $x$, whereas $\rho_i,\gamma_i$ are smooth positive functions provided $0<\frac{\rho_1(x)}{\gamma_1(x)}<\frac{\rho_2(x)}{\gamma_2(x)}$, $x\geq0$; $f=\mathrm{col}\{f_1(t),f_2(t)\}$ is a boundary control; $u=u^f(x,t)=\mathrm{col}\{u_1^f(x,t),u_2^f(x,t)\}$ is a solution (wave). Such a problem describes the wave processes in a system, where two different wave modes occur and propagate with different velocities. The modes interact that implies interesting physical effects but, on the other hand, complicates the picture of waves. For controls $f\in L_2((0,T);\mathbb R^2)$, we reduce the problem to the relevant integral equation, define the the generalized solutions $u^f$, and establish the well-possedness of the problem. Also, the fundamental matrix-valued solution is introduced and its leading singularities are studied. The existence of the “slow waves” that are the certain mixture of modes, which propagate with the slow mode velocity, is established. Bibl. – 11 titles.

Key words and phrases: Timoshenko beam, generalized solutions, principal singularities of fundamental solution, slow waves.

UDC: 517

Received: 15.09.2009


 English version:
Journal of Mathematical Sciences (New York), 2010, 167:5, 603–621

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024