RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 325, Pages 103–112 (Mi znsl352)

This article is cited in 1 paper

The $\sigma$-algebra of pasts of a random walk on the orbits of the Bernoulli action of the group $Z^d$

A. D. Gorbul'skii

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: In the present paper, we study the $\sigma$-algebra of pasts $\Xi=\{\xi_n\}_n$ of a random walk $\mathcal T$ on the orbits of the Bernoulli action of the group $Z^d$. The proper scaling and the scaling entropy of this sequence of partitions is calculated. We show that the proper scaling entropy of the $\sigma$-algebra of pasts is $h(\Xi)=\frac1{2d}\log(2d)$.

UDC: 519.218.82, 519.212.2

Received: 02.08.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 138:3, 5686–5690

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024