RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 370, Pages 44–57 (Mi znsl3530)

This article is cited in 1 paper

Multipliers for logarithmic Cauchy integrals in the ball

E. S. Dubtsov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $B_n$ denote the unit ball in $\mathbb C^n$, $n\ge1$. Let $\mathcal K_0(n)$ denote the class of functions defined for $z\in B_n$ as a constant plus the integral of the kernel $\log(1/(1-\langle z,\zeta\rangle))$ against a complex Borel measure on the sphere $\{\zeta\in\mathbb C^n\colon|\zeta|=1\}$. We study properties of the holomorphic functions $g$ such that $fg\in\mathcal K_0(n)$ for all $f\in\mathcal K_0(n)$. Also, we investigate extended Cesàro operators on the spaces $\mathcal K_0(n)$, $n\ge1$. Bibl. – 15 titles.

Key words and phrases: logariphmic Cauchy integral, pointwise multiplier, generalized Cesàro operator.

UDC: 517.55+517.98

Received: 25.09.2009


 English version:
Journal of Mathematical Sciences (New York), 2010, 166:1, 23–30

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024