RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 372, Pages 187–202 (Mi znsl3570)

On homotopy invariants of maps to the circle

S. S. Podkorytov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Homotopy classes of maps of a space $X$ to the circle $T$ form an Abelian group $B(X)$ (Bruschlinsky group). A map $f\colon B(X)\to C$, where $C$ is an Abelian group, has order at most $r$ if for a continuous map $a\colon X\to T$ the value $f([a])$ can be $\mathbb Z$-linearly expressed in terms of the indicator function $I_r(a)\colon(X\times T)^r\to\mathbb Z$ of the $r$th Cartesian power of the graph of $a$. We prove that the order of $f$ equals the algebraic degree of $f$. (A map between abelian groups has degree at most $r$ if its finite differences of order $r+1$ vanish.) Bibl. – 2 titles.

Key words and phrases: Bruschlinsky group, order of an invariant, degree of a mapping.

UDC: 515.143

Received: 11.05.2009


 English version:
Journal of Mathematical Sciences (New York), 2011, 175:5, 609–619

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025