RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 373, Pages 104–123 (Mi znsl3577)

This article is cited in 7 papers

On the ring of local invariants for a pair of the entangled $q$-bits

V. Gerdta, Yu. Paliib, A. Khvedelidzec

a Joint Institute for Nuclear Research, Dubna, Russia
b Institute of Applied Physics Academy of Sciences of Moldova, Kishinev, Moldova
c A. Razmadze Mathematical Institute, Tbilisi, Georgia

Abstract: The entanglement characteristics of two $q$-bits are encoded in the invariants of the adjoint action of the group $\mathrm{SU}(2)\otimes\mathrm{SU}(2)$ on the space of the density matrices $\mathfrak P_+$, i.e., space of $4\times4$ non-negative Hermitian matrices. The corresponding ring $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ in elements of the density matrix is studied. The special integrity basis for $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ is described and constraints on its elements due to the semi-definiteness of the density matrix are given explicitly in the form of inequalities. This basis has the property that only a minimal number of primary invariants of degree 2, 3 and one lowest degree 4 secondary invariant that appear in the Hironaka decomposition of $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ are subject to the polynomial inequalities. Bibl. – 32 titles.

Key words and phrases: polynomial invariants, entanglement space, Hironaka decomposition.

UDC: 517.986

Received: 21.09.2009


 English version:
Journal of Mathematical Sciences (New York), 2010, 168:3, 368–378

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024