RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 373, Pages 134–143 (Mi znsl3579)

This article is cited in 5 papers

Universal and comprehensive Gröbner bases of the classical determinantal ideal

M. Kalinin

M. V. Lomonosov MSU

Abstract: Let $A=(x_{ij}), i=1,2,\dots,k$, $j=1,2,\dots,l$, $1\leq k \leq l$, be a matrix of independent variables, $G$ the set of maximal minors of $A$, $I=(G)$ the classical determinantal ideal. We show that $G$ is a universal Gröbner basis of $I$. Also a sufficient condition of $G$ being a universal comprehensive Gröbner basis is proven. Bibl. – 12 titles.

Key words and phrases: Gröbner basis, universal Gröbner basis, determinantal ideal, maximal minors.

UDC: 512.71

Received: 11.09.2009


 English version:
Journal of Mathematical Sciences (New York), 2010, 168:3, 385–389

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024