RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2009 Volume 373, Pages 295–317 (Mi znsl3589)

This article is cited in 3 papers

An overview of effective normalization of a nonsingular in codimension one projective algebraic variety

A. L. Chistov

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, г. Санкт-Петербург, Россия

Abstract: Let $V$ be a nonsingular in codimension one projective algebraic variety of degree $D$ and of dimension $n$. Then the construction of the normalization of $V$ can be reduced canonically within the time polynomial in the size of the input and $D^{n^{O(1)}}$ to solving a linear equation $aX+bY+cZ=0$ over a polynomial ring. We describe a plan with all lemmas to prove this result. Bibl. – 4 titles.

Key words and phrases: algebraic variety, projective variety, normalization, complexity.

UDC: 517.987

Received: 11.09.2009

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2010, 168:3, 478–490

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024