RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 375, Pages 5–21 (Mi znsl3604)

This article is cited in 1 paper

Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type

A. V. Alexandrov, N. A. Vavilov

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: Let $R$ be a commutative ring all of whose proper factor rings are finite and such that there exists a unit of infinite order. We show that for a subgroup $P$ in $G=\mathrm{SL}(n,R)$, $n\ge3$, or in $G=\mathrm{Sp}(2l,R)$, $l\ge2$, containing Borel subgroup $B$, the following alternative holds. Either $P$ contains a relative elementary subgroup $E_I$ for some ideal $I\neq0$, or $H$ is contained in a proper standard parabolic subgroup. For Dedekind rings of arithmetic type this allows, under some mild additional assumptions on units, to completely describe overgroups of $B$ in $G$. Bibl. – 30 titles.

Key words and phrases: special linear group, symplectic group, transvections, parabolic subgroups, Dedekind ring of arythmetic type.

UDC: 513.6

Received: 31.03.2010


 English version:
Journal of Mathematical Sciences (New York), 2010, 171:3, 307–316

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024