RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 376, Pages 25–47 (Mi znsl3617)

This article is cited in 5 papers

Correction up to a function with sparse spectrum and uniformly convergent Fourier series

P. Ivanishvilia, S. V. Kislyakovb

a Saint-Petersburg State University, Saint-Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: In 1984, the second author proved that, after correction on a set of arbitrarily small measure, any continuous function on a finite-dimensional compact Abelian group acquires sparse spectrum and uniformly convergent Fourier series. In the present paper we refine the result in two directions: first, we ensure uniform convergence in a stronger sense; second, we prove that the spectrum after correction can be put in even more peculiar sparse sets. Bibl. – 6 titles.

Key words and phrases: Men'shov correction theorem.

UDC: 517

Received: 01.03.2010


 English version:
Journal of Mathematical Sciences (New York), 2011, 172:2, 195–206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024