RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1996 Volume 234, Pages 20–38 (Mi znsl3628)

On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space

A. A. Borisenko (jr.)

Московский государственный университет

Abstract: It is shown that the structure of a three-dimensional minimal parabolic surface is determined by the pair $(V^2,\gamma)$, where $V^2$ is a minimal two-dimensional surface in $S^n$ and $\gamma$ satisfies $\Delta\gamma+2\gamma=0$ (here $\Delta$ is the Laplace operator in $R^n$). It is also shown that the singularities of the surface are determined by zeros of $\gamma$. Bibl. 9 titles.

UDC: 517.934

Received: 20.10.1992

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1999, 94:2, 1147–1160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024