RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1996 Volume 232, Pages 16–32 (Mi znsl3673)

This article is cited in 1 paper

Lacunary series and pseudocontinuations

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The main aim of this paper is to prove the following assertion. Let $f=\sum_{n\in E}a_nz^n$ be a function holomorphic and of bounded characteristic in the unit disk $\mathbb D$ where $E$ is a $\Lambda(1)$-subset of $\mathbb Z_+$. Suppose $f$ has a pseudocontinuation of bounded characteristic in an annulus $\{z\in\mathbb C\colon1<|z|<R\}$. Then $f$ admits analytic continuation to the disk $R\mathbb D$. In particular, $f$ is a polynomial if $R=+\infty$. Bibl. 16 titles.

UDC: 517.5

Received: 13.11.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 92:1, 3550–3559

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024