RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1996 Volume 232, Pages 148–173 (Mi znsl3684)

This article is cited in 2 papers

Double operator integrals and their estimates in the uniform norm

Yu. B. Farforovskaya

State University of Telecommunications

Abstract: In the paper the conditions are considered for the existence of the double operator integral $\iint\varphi(\lambda,\mu)\,dE_\lambda TdF_\mu$, where $E_\lambda,F_\mu$ are the spectral functions of two self adjoint operators $A,B$ on a Hilbert space and $T$ is a bounded operator. In principal, the case where $A$ has finite spectrum is studied. Non-linear estimates of $\|f(A)T-Tf(B)\|$ in terms of the norm of $\|AT-TB\|$ for $f\in\operatorname{Lip}1$ are deduced. Also, a formula for the Fréchet derivative is presented. Bibl. 16 titles.

UDC: 517.5

Received: 30.11.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 92:1, 3640–3656

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024