RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1996 Volume 226, Pages 138–154 (Mi znsl3727)

This article is cited in 17 papers

Convolution properties of some classes of analytic functions

S. Ponnusamya, Vikramaditya Singhb

a Department of Mathematics, University of Helsinki, Finland
b Azad Nagar, KANPUR, India

Abstract: Let $\mathcal A$ denote the class of functions analytic in $|z|<1$ normalized so that $f(0)=0$ and $f'(0)=1$ and let $\mathcal R(\alpha,\beta)\subset\mathcal A$ be the class of functions $f$ such that
$$ \operatorname{Re}[f'(z)+\alpha zF''(z)]>\beta,\qquad\operatorname{Re}\alpha>0,\quad\beta<1. $$
We determine conditions so that
(i) $f\in\mathcal R(\alpha_1,\beta_1)$, $g\in\mathcal R(\alpha_2,\beta_2)$ implies $f*g$, convolution of $f$ and $g$, is convex;
(ii) $f\in\mathcal R(0,\beta_1)$, $g\in\mathcal R(0,\beta_2)$ implies $f*g$ is starlike;
(iii) $f\in\mathcal A$ satisfying $f'(z)[f(z)/z]^{\mu-1}\prec1+\lambda z$, $\mu>0$, $0<\lambda<1$ is starlike
and
(iv) $f\in\mathcal A$ satisfying $f'(z)+\alpha zf''(z)\prec1+\delta z$, $\alpha>0$, $\delta>0$ is convex or starlike.
Bibl. 16 titles.

UDC: 517.54

Received: 11.09.1995

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1998, 89:1, 1008–1020

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024