RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 324, Pages 229–246 (Mi znsl373)

This article is cited in 2 papers

On propagation of Scholte–Gogoladze surface waves along a fluid-solid interface of arbitrary shape

K. D. Cherednichenkoab

a Saint-Petersburg State University
b St. John's College Oxford

Abstract: A high-frequency ray theory is presented for a type of small-amplitude waves (Scholte–Gogoladze waves) localised in a thin layer around an interface between elastic and fluid domains. The interface is assumed to be smooth, with the typical radius of curvature much larger than the excitation wavelength. The technique employed in the work is based on a boundary-layer version of the classical WKB expansion (see V. M. Babich and N. Ya. Kirpichnikova, The boundary-layer method in diffraction problems, Berlin; New York: Springer-Verlag, 1979).

UDC: 517.9, 534.2

Received: 08.02.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 138:2, 5613–5622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024