RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 231, Pages 245–254 (Mi znsl3754)

This article is cited in 2 papers

Topological methods in geometry

Generalized Sperner lemma and subdivisions into simplices of equal volume

Boris M. Bekker, Nikita Yu. Netsvetaev

С.-Петербургский государственный университет

Abstract: A generalization of the well-known Sperner lemma is suggested, which covers the case of arbitrary subdivisions of (convex) polyhedra into (convex) polyhedra. It is used for giving a new proof of the Thomas–Monsky–Mead theorem saying that the $n$-cube can be subdivided into $N$ simplices of equal volume if and only if $N$ is divisible by $n!$. Some new related results are announced. Bibl. 6 titles.

UDC: 514.752

Received: 15.06.1994

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1998, 91:6, 3492–3498

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024