RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 231, Pages 299–308 (Mi znsl3758)

Topological methods in geometry

Mirror configurations of points and lines and algebraic surfaces of degree four

S. S. Podkorytov

Saint-Petersburg State University

Abstract: We prove that mirror nonsingular configurations of m points and $n$ lines in $\mathbb RP^3$ exist only for $m\le3$, $n\equiv0$ or $1\pmod4$ and for $m=0$ or $1\pmod4$, $n\equiv0\pmod2$. In addition, we give an elementary proof of V. M. Kharlamov's well-known result saying that if a nonsingular surface of degree four in $\mathbb RP^3$ is noncontractible and has $M\ge5$ components, then it is nonmirror. For the cases $M=5, 6,7$ and $8$, Kharlamov suggested an elementary proof using an analogy between such surfaces and configurations of $M-1$ points and a line. Our proof covers the remaining cases $M=9,10$. Bibl. 5 titles.

UDC: 512.77+515.16

Received: 07.10.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 91:6, 3526–3531

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025