RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 230, Pages 21–35 (Mi znsl3762)

This article is cited in 3 papers

The conservative model of a dissipative dynamical system

M. I. Belishev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $R_\sigma$ be the response operator of a dissipative dynamical system (DS) governed by the equation $u_{tt}+\sigma u_t-u_{xx}=0$, $x>0$, where $\sigma=\sigma(x)\ge0$. Let $R_q$ be the response operator of a conservative DS governed by the equation $u_{tt}-u_{xx}+q(x)u=0$, $x>0$, where $q=q(x)$ is real. We demonstrate that for any dissipative DS there exists a unique conservative DS (the “model”) such that $R_\sigma=R_q$ is valid. Bibl. 10 titles.

UDC: 517.946

Received: 13.06.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 91:2, 2711–2721

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024