RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 323, Pages 34–46 (Mi znsl378)

This article is cited in 7 papers

On the codimension of the variety of symmetric matrices with multiple eigenvalues

M. Danaa, Kh. D. Ikramovb

a University of Kurdistan
b M. V. Lomonosov Moscow State University

Abstract: According to a result of Wigner and von Neumann, the dimension of the set $\mathcal M$ of $n\times n$ real symmetric matrices with multiple eigenvalues is equal to $N-2$, where $N=n(n+1)/2$. This value is determined by counting the number of free parameters in the spectral decomposition of a matrix. We show that the same dimension is obtained if $\mathcal M$ is interpreted as an algebraic variety.

UDC: 512.643

Received: 06.01.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 137:3, 4780–4786

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024