RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 323, Pages 47–49 (Mi znsl379)

On the principal minors of a matrix with a multiple eigenvalue

Kh. D. Ikramov

M. V. Lomonosov Moscow State University

Abstract: The property of a Hermitian $n\times n$ matrix $A$ that all its principal minors of order $n-1$ vanish is shown to be a purely algebraic implication of the fact that the two lowest coefficients of its characteristic polynomial are zero. To prove this assertion, no information on the rank or the eigenvalues of $A$ is required.

UDC: 512

Received: 06.04.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 137:3, 4787–4788

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024