RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 377, Pages 199–216 (Mi znsl3821)

This article is cited in 5 papers

Bounds for the cubic Weyl sum

D. R. Heath-Brown

Mathematical Institute, Oxford

Abstract: Subject to the $abc$-conjecture, we improve the standard Weyl estimate for cubic exponential sums in which the argument is a quadratic irrational. Specifically we show that
$$ \sum_{n\le N}e(\alpha n^3)\ll_{\varepsilon,\alpha}N^{\frac57+\varepsilon} $$
for any $\varepsilon>0$ and any quadratic irrational $\alpha\in\mathbb R-\mathbb Q$. Classically one would have had the (unconditional) exponent $\frac34+\varepsilon$ for such $\alpha$. Bibl. 5 titles.

Key words and phrases: cubic Weyl sum, quadratic irrational, van der Corput's method, upper bound, exponential sum.

UDC: 511.33

Received: 21.05.2010

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2010, 171:6, 813–823

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024