RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 382, Pages 15–37 (Mi znsl3857)

This article is cited in 2 papers

Embedded spaces and wavelets on a manifold

Yu. K. Demjanovich

St. Petersburg State University, St. Petersburg, Russia

Abstract: Simple methods for constructing systems of embedded spline spaces on a manifold are suggested, and wavelet decompositions of such systems are discussed. The results obtained are applied to constructing embedded spline spaces of Lagrange type. Bibl. 8 titles.

Key words and phrases: splines, wavelets on a manifold, approximation relations, caliber relations, embedded spaces.

UDC: 519

Received: 08.11.2010


 English version:
Journal of Mathematical Sciences (New York), 2011, 176:1, 7–19

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024