RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 382, Pages 47–54 (Mi znsl3859)

This article is cited in 2 papers

On latently real matrices and block quaternions

Kh. D. Ikramov

Moscow State University, Moscow, Russia

Abstract: Let a complex $n\times n$ matrix $A$ be unitarily similar to its entrywise conjugate matrix $\overline A$. If the unitary matrix $P$ in the relation $\overline A=P^*AP$ can be chosen symmetric (skew-symmetric), then $A$ is called a latently real matrix (respectively, a generalized block quaternion). The differences in the systems of elementary divisors of these two matrix classes are found that explain why latently real matrices can be made real via unitary similarities, whereas, normally, block quaternions cannot. Bibl. 5 titles.

Key words and phrases: unitary similarity transformation, block quaternion, irreducibility, elementary divisors, inner product spaces.

UDC: 512

Received: 15.04.2010


 English version:
Journal of Mathematical Sciences (New York), 2011, 176:1, 25–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024