RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 382, Pages 60–70 (Mi znsl3861)

On conjugate-normal $(T+H)$-circulants and skew-circulants

Kh. D. Ikramova, V. N. Chugunovb

a Moscow State University, Moscow, Russia
b Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

Abstract: A matrix $A$ is called a $(T+H)$-circulant (skew-circulant) if $A$ can be represented as a sum of a conventional (that is, Toeplitz) and a ankel circulants (respectively, skew-circulants). A complete description of the sets of conjugate-normal $(T+H)$-circulants and skew-circulants is given. Bibl. 3 titles.

Key words and phrases: Toeplitz matrix, Hankel matrix, $(T+H)$-matrix, conjugate-normal matrix, circulant, Hankel circulant, $\phi$-circulant, $(T+H)$-circulant.

UDC: 512

Received: 19.01.2010


 English version:
Journal of Mathematical Sciences (New York), 2011, 176:1, 32–37

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024