Abstract:
A matrix $A$ is called a $(T+H)$-circulant (skew-circulant) if $A$ can be represented as a sum of a conventional (that is, Toeplitz) and a ankel circulants (respectively, skew-circulants). A complete description of the sets of conjugate-normal $(T+H)$-circulants and skew-circulants is given. Bibl. 3 titles.
Key words and phrases:Toeplitz matrix, Hankel matrix, $(T+H)$-matrix, conjugate-normal matrix, circulant, Hankel circulant, $\phi$-circulant, $(T+H)$-circulant.