RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 383, Pages 193–203 (Mi znsl3881)

This article is cited in 2 papers

On the distribution of integral points on cones

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $r_k(n)$ denote the number of representations of a positive integer $n$ as the sum of $k$ squares. We prove that
$$ \sum_{n\le x}r^2_3(n)=Cx^2+O\Big(x^\frac32\big(\log x\big)^\frac72\Big), $$
where $C>0$ is a certain constant, and that
$$ \sum_{n\le x}r^2_4(n)=32\zeta(3)x^3+O\Big(x^2\big(\log x\big)^\frac53\Big). $$
Bibl. 14 titles.

Key words and phrases: lattice point, sum of squares, Jacobi symbol.

UDC: 511.466+517.863

Received: 26.04.2010


 English version:
Journal of Mathematical Sciences (New York), 2011, 178:2, 227–233

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024