RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 385, Pages 5–17 (Mi znsl3897)

This article is cited in 6 papers

A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation

M. Bildhauer, M. Fuchs

Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany

Abstract: We discuss variational integrals with density having linear growth on spaces of vector valued $BV$-functions and prove $\operatorname{Im}(u)\subset K$ for minimizers $u$ provided that the boundary data take their values in the closed convex set $K$ assuming in addition that the integrand satisfies natural structure conditions. Bibl. 14 titles.

Key words and phrases: functions of bounded variation, linear growth problems, minimizers, convex hull property, maximum principle.

UDC: 517

Received: 30.05.2010

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2011, 178:3, 235–242

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024