RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 385, Pages 69–82 (Mi znsl3900)

This article is cited in 6 papers

Absolute continuity of the spectrum of the periodic Scrödinger operator in a layer and in a smooth cylinder

I. Kachkovskii, N. Filonov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: The Schrödinger operator $H=\Delta+V$ in a layer or in a $d$-dimensional cylinder is considered. The function $V$ is suppored to be periodic with respect to some lattice. The absolute continuity of the spectrum of $H$ is established under the following conditions: $V\in L_{p,\mathrm{loc})}$ where $p>d/2$ in the case of a layer, and $p>>\max(d/2,d-2)$ in the case of a cylinder. Bibl. 14 titles.

Key words and phrases: Schrödinger operator, periodic coefficients, absolutely continuous spectrum.

UDC: 517

Received: 03.09.2010


 English version:
Journal of Mathematical Sciences (New York), 2011, 178:3, 274–281

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024