RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 385, Pages 206–223 (Mi znsl3906)

The order of convergence in the Stefan problem with vanishing specific heat

E. V. Frolova

С.-Петербургский государственный электротехнический университет, С.-Петербург, Россия

Abstract: The paper is concerned with a two-phase Stefan problem with a small parameter $\varepsilon$ which coresponds to the specific heat of the material. We assume that the initial condition does not coincide with the value at $t=0$ of the solution to the limit problem related to $\varepsilon=0$. To remove this discrepancy, we introduce an auxiliary boundary layer type function. We prove that the solution to the two-phase Stefan problem with parameter $\varepsilon$ differs from the sum of the solution to the limit Hele–Shaw problem and the boundary layer type function by quantities of the order $O(\varepsilon)$. The estimates are obtained in Hölder norms. Bibl. 13 titles.

Key words and phrases: free boundary, Stefan problem, small parameter, boundary layer, Hölder norms.

UDC: 517

Received: 23.11.2010

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2011, 178:3, 357–366

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024