RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 385, Pages 224–233 (Mi znsl3907)

This article is cited in 10 papers

Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient

M. Fuchsa, S. Repinb

a Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany
b St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia

Abstract: If $\Omega\subset\mathbb R^n$ is a bounded Lipschitz domain, we prove the inequality $\|u\|_1\le c(n)\operatorname{diam}(\Omega)\int_\Omega|\varepsilon^D(u)|$ being valid for functions of bounded deformation vanishing on $\partial\Omega$. Here $\varepsilon^D(u)$ denotes the deviatoric part of the symmetric gradient and $\int_\Omega|\varepsilon^D(u)|$ stands for the total variation of the tensor-valued measure $\varepsilon^D(u)$. Further results concern possible extensions of this Poincaré-type inequality. Bibl. 27 titles.

Key words and phrases: functions of bounded deformation, Poincaré' s inequality.

UDC: 517

Received: 30.05.2010

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2011, 178:3, 367–372

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024