RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1981 Volume 109, Pages 41–82 (Mi znsl3919)

This article is cited in 3 papers

Analogues of the Gauss–Vinogradov formula on the critical line

A. I. Vinogradov, L. A. Takhtadzhyan


Abstract: An asymptotic behavior of the sum $\sum_{p\equiv v(\operatorname{mod}4),\ p\le X}L(s,\chi_p)$ for $X\to\infty$ is studied in the critical strip, where $L(s,\chi_p)$ is the Dirichlet series with the quadratic character $\chi_p$ modulo $p$, where $p$ is a prime number; $v=1$ or $3$. With the help of large seive estimates a formula for this sum is obtained with two asymptotic terms on the critical line of the variable $s$. As a corollary the asymptotic expansion of this sum at the point $s=1/2$ is presented. The asymptotic formula for the sum $\sum_{|d|\le X}L(s,\chi_d)$, where $d$ runs over discriminants of quadratic fields, is also obtained.

UDC: 511.33+511.43


 English version:
Journal of Soviet Mathematics, 1984, 24:2, 183–208

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024