RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1981 Volume 112, Pages 5–25 (Mi znsl3924)

This article is cited in 9 papers

Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$

V. A. Bykovskii


Abstract: The results of I. M. Vinogradov and van der Corput regarding the number of integral points under a curve are generalized to the case when on the integral points $(a_1,a_2)$ one imposes the additional condition $a_1a_2\equiv l(\operatorname{mod}q)$. A corollary is an asymptotic formula for
$$ \sum^p_{z=1}\tau(z^2+D) $$
with the remainder $O(P^{5/6+\varepsilon})$ instead of Hooley's estimate $O(P^{8/9+\varepsilon})$. It is shown how with the aid of the spectral theory of automorphic functions one can bring the estimate to $O(P^{2/3+\varepsilon})$.

UDC: 511.33


 English version:
Journal of Soviet Mathematics, 1984, 25:2, 975–988

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024