On an exponential sum
P. Ding Simon Fraser University
Abstract:
Let
$p$ be a prime number,
$n$ be a positive integer, and
$f(x) = ax^k+bx$. We put
$$
S(f,p^n)=\sum_{x=1}^{p^n}e\biggl(\frac{f(x)}{p^n}\biggr),
$$
where
$e(t)=\exp(2\pi it)$. This special exponential sum has been widely studied in connection with Waring's problem. We write
$n$ in the form
$n=Qk+r$, where
$0\le r\le k-1$ and
$Q\ge 0$. Let
$\alpha=\operatorname{ord}_p(k)$,
$\beta=\operatorname{ord}_p(k-1)$, and
$\theta=\operatorname{ord}_p(b)$. We define
$$
\mathcal Q=\begin{cases}
\dfrac{\theta-\alpha}{k-1},&\text{если }\theta\ge\alpha,
\\
0,&\text{иначе},
\end{cases}
$$
and
$J=[\zeta]$. Moreover, we denote
$V=\min(Q,J)$. Improving the preceding result, we establish the theorem.
Theorem. Let $k\ge 2$ and $n\ge 2$. If $p>2$, then
$$
|S(f,p^n)|\le\begin{cases}
p^{\frac{1-V}2}p^{\frac n2}(b,p^n)^{\frac12},&\text{if }n\equiv 1\pmod k,
\\
(k-1,p-1)p^{-\frac V2}p^{\frac{\min(\alpha,1)}2}p^{\min(\frac\beta2,\frac n2-1)}p^{\frac n2}(b,p^n)^{\frac12}, &\text{if }n\not\equiv 1\pmod k.
\end{cases}
$$
An example showing that this result is best possible is given. Bibliography: 15 titles.
UDC:
519.68 Received: 03.02.2005
Language: English