RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1981 Volume 112, Pages 121–142 (Mi znsl3933)

Certain analogues of the Hardy–Litlewood problem and density methods

F. B. Koval'chik


Abstract: Applying density methods of the theory of the Dirichlet $L$-functions, one finds an asymptotic formula for the number of solutions of the equations of the type $N=\varphi(x,y)+m$ and $N=m-\varphi(x,y)$, where $\varphi(x,y)$ is a positive primitive quadratic form, while $m$ is representable by a sum of two squares and runs through its values without repetition.

UDC: 511.3


 English version:
Journal of Soviet Mathematics, 1984, 25:2, 1057–1072

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025