RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1981 Volume 113, Pages 27–40 (Mi znsl3940)

This article is cited in 1 paper

Analytic continuation from a continuum to its neighborhood

A. L. Varfolomeev


Abstract: Let $r$ be a positive number. A function $f$ analytic in an open set $\mathcal O\subset\mathbb C$ is called $r$-analytic on the set $E$, $E\subset\mathcal O$, if $\varlimsup_{k\to+\infty}\bigl|\frac{f^{(k)}(t)}{k!}\bigr|^{1/k}\le\frac1r$ ($t\in E$).
THEOREM. Let $K$ be a compact connected subset of the plane. For any $r>0$ there exists an open neighborhood $V$ of the set $K$ such that any function $r$-analytic on coincides in some neighborhood of the set $K$ with a function analytic in $V$.
This theorem answers a question posed in the collection (RZhMat., 1979, 3B536, pp. 33–35 of the book).

UDC: 513.881


 English version:
Journal of Soviet Mathematics, 1983, 22:6, 1709–1718

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025