This article is cited in
14 papers
Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a problem of S.-Nagy
V. A. Tolokonnikov
Abstract:
Let
$E_1,E_2$ be Hilbert spaces,
$H^\infty(E_1,E_2)$ be the space of functions, bounded and analytic in the disk
$\mathbb D$, with values in the space of bounded linear operators from
$E_1$ to
$E_2$. Estimates are investigated for a solution of the problem of S.-Nagy of finding a left inverse element for a function
$F$,
$F\in H^\infty(E_1,E_2)$. For
$\dim E_1=1$ this problem is a generalization of the corona problem. Let $C_n(\delta)=\sup\{\|G\|_\infty\colon F\in H^\infty(E_1,E_2),\,\dim E_1=n,\,\|F\|_\infty\le1,\,\|F(z)a\|_2\ge\delta\|a\|_2\ (z\in\mathbb D,\,a\in E_1 );\ G\in H^\infty(E_2,E_1)\ \text{is a~function of minimal norm for which}\ GF=I_{E_1}\}$. Then
$$
\frac1{\sqrt2\delta^2}\le C_1(\delta)\le\frac{20(\log 1/\delta+1)^{3/2}}{\delta^2},\qquad c_n\delta^{-(n-1)}\le C_n(\delta)\le a_n\delta^{-(2n+1)},
$$
where
$a_n,c_n$ are constants depending only on
$n$. The behavior of the function
$C_1$ as
$\delta\to1$ is described. Other results are obtained also.
UDC:
517.54