RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1981 Volume 113, Pages 261–263 (Mi znsl3960)

Short communications

Counterexample to a uniqueness theorem foranalytic operator functions

D. R. Yafaev


Abstract: It is proved that there exists a bounded holomorphic operator-function $z\mapsto F(z)$, $|z|<1$, with compact values (in a separable Hilbert space) and such that its boundary values $F(\zeta)$, $|\zeta|=1$, are compact on one (given) arc of the circle and not compact on the other. The corresponding example is constructed with the help of vectorial Hankel operators.

UDC: 513.881


 English version:
Journal of Soviet Mathematics, 1983, 22:6, 1872–1874

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025