RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 115, Pages 3–15 (Mi znsl4036)

This article is cited in 14 papers

Attractors of Navier–Stokes systems and of parabolic equations, and estimates for their dimensions

A. V. Babin, M. I. Vishik


Abstract: One investigates the problem of the existence of an attractor $\mathfrak A$ of the semigroup $S_t$ generated by the solutions of the nonlinear nonstationary equations
$$ \frac{\partial u}{\partial t}=A(u),\quad u\mid_{t=0}=u_0(t);\qquad S_tu_0\equiv u(t). $$
One proves a very general theorem on the existence of an attractor $\mathfrak A$ of the semigroup $S_t$ for $t\to\infty$. One gives examples of differential equations having attractors: a second-order quasilinear parabolic equation, a two-dimensional Navier–Stokes system, a monotone parabolic equation of any order. One proves a theorem on the finiteness of the Hausdorff dimension of the attractor $\mathfrak A$. One gives an estimate for the Hausdorff dimension of the attractor $\mathfrak A$ for a two-dimensional Navier–Stokes system.

UDC: 517.9


 English version:
Journal of Soviet Mathematics, 1985, 28:5, 619–627

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024