RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 115, Pages 16–22 (Mi znsl4037)

This article is cited in 2 papers

Asymptotic behavior relative to a large parameter of the solution of the Fok–Klein–Gordon equation in the case of a discontinuous initial condition

V. M. Babich


Abstract: One considers the problem of the asymptotic behavior for $k\to+\infty$ of the solution of the Cauchy problem:
$$ u_{tt}-u_{xx}+k^2u=0;\qquad u\mid_{t=0}=\theta(x),\quad u_t\mid_{t=0}=0\ (t>0\text{ -- fixed}). $$
Here $\theta(x)$ is the Heaviside function. In the neighborhood of the characteristics $x=\pm t$ function $u(x,t)$ oscillates exceptionally fast (the wavelength is of order $k^{-2}$). Near the $t$ axis the asymptotics of $u(x,t)$ contains the Fresnel integral.

UDC: 517.946


 English version:
Journal of Soviet Mathematics, 1985, 28:5, 628–632

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024