RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 115, Pages 97–103 (Mi znsl4043)

This article is cited in 1 paper

Solution of the Dirichlet problem for the Monge–Ampere equation in weight spaces

N. M. Ivochkina


Abstract: One proves the regular solvability of the problem: $\det(u_{xx})=f(x,u,u_x)\ge\nu>0$, $u\mid_{\partial\Omega}=0$ for $f(u,u,\rho)\in C^{k+\alpha}(\overline{\mathfrak A})$, $\overline{\mathfrak A}\equiv\{x\in\overline\Omega;u\in R^1;\rho\in R^n\}$, $k\ge2$, under the natural consistency conditions of the dimensions of the convex domain $0<\alpha<1$, $\Omega\subset R^n$ and the growth of the function $f(x,u,\rho)$ with respect to $\rho$.

UDC: 617.946


 English version:
Journal of Soviet Mathematics, 1985, 28:5, 684–688

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024