RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 115, Pages 137–155 (Mi znsl4047)

This article is cited in 44 papers

Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems

O. A. Ladyzhenskaya


Abstract: One proves the finite-dimensionality of a bounded set $M$ of a Hilbert space $H$, negatively invariant relative to a transformation $V$, possessing the following properties: For any points $v$ and $\tilde v$ of the set $M$ one has
$$ \|V(v)-V(\tilde v)\|\le l\|v-\tilde v\|, $$
while
$$ \|Q_nV(v)-Q_nV(\tilde v)\|\le\delta\|v-\tilde v\|,\quad\delta<1, $$
where $Q_n$ is the orthoprojection onto a subspace of codimension $n$. With the aid of this result and of the results found in O. A. Ladyzhenskaya's paper “On the dynamical system generated by the Navier–Stokes equations” (J. Sov. Math., 3, No. 4 (1975)) one establishes the finite-dimensionality of the complete attractor for two-dimensional Navier–Stokes equations. The same holds for many other dissipative problems.

UDC: 517.9


 English version:
Journal of Soviet Mathematics, 1985, 28:5, 714–726

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025