RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 115, Pages 169–177 (Mi znsl4049)

Global solutions of nonstationary kinetic equations

N. B. Maslova


Abstract: For the nonstationary Boltzmann equation
$$ \frac{\partial F}{\partial t}+\xi_\alpha\frac{\partial F}{\partial x_\alpha}=Q(F,F),\qquad t>0,\quad\xi\in R^3,\quad x\in\Omega\subset R^3, $$
one proves the unique global solvability of the Cauchy problem under nondifferentiable initial data and the unique global solvability of initial-boundary-value problems with homogeneous boundary conditions; it is shown that the solutions of the initial-boundary-value problems decay exponentially as $t\to\infty$.

UDC: 517.9


 English version:
Journal of Soviet Mathematics, 1985, 28:5, 735–741

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025